17 research outputs found

    Modeling and control of PEM fuel cells

    Get PDF
    Aplicat embargament des del moment de la defensa fins al 5 de juliol de 2019.In recent years, the PEM fuel cell technology has been incorporated to the R&D plans of many key companies in the automotive, stationary power and portable electronics sectors. However, despite current developments, the technology is not mature enough to be significantly introduced into the energy market. Performance, durability and cost are the key challenges. The performance and durability of PEM fue! cells significantly depend on variations in the concentrations of hydrogen and oxygen in the gas channels, water activity in the catalyst layers and other backing layers, water content in the polymer electrolyte membrane, as well as temperature, among other variables. Such variables exhibit intemal spatial dependence in the direction of the fuel and air streams of the anode and cathode. Highly non-uniform spatial distributions in PEM fuel cells result in local over-heating, cell flooding, accelerated ageing, and lower power output than expected. Despite the importance of spatial variations of certain variables in PEM fuel cells, not many works available in the literature target the control of spatial profiles. Most control-oriented designs use lumped-parameter models because of their simplicity and convenience for controller performance. In contrast, this Doctoral Thesis targets the distributed parameter modelling and control of PEM fuel cells. In the modelling part, the research addresses the detailed development of a non-linear distributed parameter model of a single PEM fuel cell, which incorporates the effects of spatial variations of variables that are relevant to its proper performance. The model is first used to analyse important cell intemal spatial profiles, and it is later simplified in arder to decrease its computational complexity and make it suitable for control purposes. In this task, two different model order reduction techniques are applied and compared. The purpose of the control part is to tackle water management and supply of reactants, which are two major PEM fuel cell operation challenges with important degradation consequences. In this part of the Thesis, two decentralised control strategies based on distributed parameter model predictive controllers are designed, implemented and analysed via simulation environment State observers are also designed to estímate intemal unmeasurable spatial profiles necessary for the control action. The aim of the first strategy is to monitor and control observed water activity spatial profiles on both sides of the membrana to appropriate levels. These target values are carefully chosen to combine proper membrane, catalyst layer and gas diffusion layer humídification, whilst the rate of accumulation of excess liquid water is reduced. The key objective of this approach is to decrease the frequency of water removal actions that cause disruption in the power supplied by the cell, increased parasitic losses or degradation of cell efficiency. The second strategy is a variation of the previous water activity control strategy, which includes the control of spatial distribution of gases in the fuel and air channels. This integrated solution aims to avoid starvation of reactants by controlling corresponding concentration spatial profiles. This approach is intended to prevent PEM fuel cell degradation due to corrosion mechanisms, and thennal stress caused by the consequences of reactant starvation.A pesar de los avances actuales, la tecnología de celdas de hidrógeno tipo PEM no está suficientemente preparada para ser ampliamente introducida en el mercado energético. Rendimiento, durabilidad y costo son los mayores retos. El rendimiento y la durabilidad de las celdas dependen significativamente de las variaciones en las concentraciones de hidrógeno y oxígeno en los canales de alimentación de gases, la humedad relativa en las capas catalizadoras, el contenido de agua de la membrana polimérica, así como la temperatura, entre otras variables. Dichas variables presentan dependencia espacial interna en la dirección del flujo de gases del ánodo y del cátodo. Distribuciones espaciales altamente no uniformes en algunas variables de la celda resultan en sobrecalentamiento local, inundación, degradación acelerada y menor potencia de la requerida. Muy pocos trabajos disponibles en la literatura se ocupan del control de perfiles espaciales. La mayoría de los diseños orientados a control usan modelos de parámetros concentrados que ignoran la dependencia espacial de variables internas de la celda, debido a la complejidad que añaden al funcionamiento de controladores. En contraste, esta Tesis Doctoral trata la modelización y control de parámetros distribuidos en las celdas de hidrógeno tipo PEM. En la parte de modelización, esta tesis presenta el desarrollo detallado de un modelo no lineal de parámetros distribuidos para una sola celda, el cual incorpora las variaciones espaciales de todas las variables que son relevantes para su correcto funcionamiento. El modelo se usa primero para analizar importantes perfiles espaciales internos, y luego se simplifica para reducir su complejidad computacional y adecuarlo a propósitos de control. En esta tarea se usan y se comparan dos técnicas de reducción de orden de modelos. El propósito de la parte de control es abordar la gestión de agua y el suministro de reactantes, que son dos grandes retos en el funcionamiento de las celdas con importantes consecuencias para su vida útil. En esta parte de la tesis, dos estrategias de control descentralizadas, basadas en controladores predictivos de modelos de referencia con parámetros distribuidos, son diseñadas, implementadas y analizadas en un entorno de simulación. Estas tareas incluyen también el diseño de observadores de estado que estiman los perfiles espaciales internos necesarios para la acción de control. El objetivo de la primera estrategia es monitorear y controlar perfiles espaciales observados de la humedad relativa en las capas catalizadoras para mantenerlos en niveles apropiados. Estos niveles son escogidos cuidadosamente para combinar la correcta humidificación de la membrana y las capas catalizadoras, reduciendo la velocidad de acumulación de agua líquida. El objetivo clave de este enfoque es disminuir la frecuencia de las acciones de remoción de agua dentro de la celda, ya que estas acciones causan interrupción en la potencia suministrada, aumento de las cargas parasitarias y disminución de la eficiencia. La segunda estrategia es una variación de la estrategia anterior que considera adicionalmente el control de la distribución espacial de los gases en los canales del ánodo y cátodo. Esta solución integrada tiene como objetivo evitar la ausencia local de reactantes mediante el control de perfiles espaciales de concentración de gases. Este enfoque pretende prevenir la degradación de las celdas debido a mecanismos de corrosión. Los resultados muestran un mayor rendimiento de la celda considerando los enfoques de control de perfiles espaciales propuestos en esta tesis, en comparación con técnicas de control que ignoran dichos perfiles. Además, la característica descentralizada de los esquemas de control, combinada con el uso de modelos reducidos dentro de los controladores predictivos, tiene un impacto positivo importante en el rendimiento general del control.Postprint (published version

    Distributed parameter model simulation tool for PEM fuel cells

    Get PDF
    En este trabajo se ha desarrollado una herramienta de simulación para pilas de combustible tipo PEM, basada en un modelo de parámetros distribuidos. La herramienta está diseñada para realizar estudios de variaciones espaciales y temporales a lo largo de los canales de alimentación de reactantes. El trabajo muestra y analiza los resultados de simulación de una monocelda monocanal. Las variables estudiadas son las concentraciones de los reactantes, presiones, temperaturas, humidificación, contenido de agua de la membrana, corriente, entre otras que influyen significativamente sobre el rendimiento y durabilidad de las pilas PEM.Peer ReviewedPostprint (published version

    Distributed parameter model simulation tool for PEM fuel cells

    Get PDF
    In this work, a simulation tool for proton exchange membrane fuel cells (PEMFC) has been developed, based on a distributed parameter model. The tool is designed to perform studies of time and space variations in the direction of the gas channels. Results for steady-state and dynamic simulations for a single cell of one channel are presented and analyzed. Considered variables are concentrations of reactants, pressures, temperatures, humidification, membrane water content, current density, among others that have significant effects on the performance and durability of PEMFC. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.Peer ReviewedPostprint (published version

    Order reduction of a distributed parameter PEM fuel cell anode gas channel model

    Get PDF
    Distributed parameter modeling is required to accurately consider space variations, which are important regarding the performance and durability of the Proton Exchange Membrane Fuel Cells (PEMFC) [1-3]. However, the number of differential and algebraic equations (DAE) obtained from the discretization of a set of partial differential equations (PDE) is very large, and this not only slows down the numerical simulations, but also complicates the design of online model-based controllers. The inclusion of complex DAE models within model-based control schemes requires a previous simplification. A method to simplify complex models consists of reducing the order while preserving the relationship between certain input and output variables, determined from the control objectives. These Model Order Reduction (MOR) techniques have been extended to DAE systems [4]. This work focuses on obtaining an order reduced model, from a PEMFC anode gas channel PDE model, which incorporates the effects of distributed parameters that are relevant for the proper functioning and performance of PEMFC. The original model is an in-house MATLAB® code, flexible enough to manipulate the underlying model equations and apply MOR techniques. The obtained order-reduced model is suitable to perform numerical simulations and design efficient controllers for the original nonlinear PDE model.Postprint (published version

    Observation of the internal states of a PEMFC anode gas channel

    Get PDF
    In this work a non-linear, model-based state observer is developed. Dynamics of the system described by a distributed parameter, partial differential equations model. Forward and backward discretization of the model to take advantage of the boundary conditions. Simulation results are presented to show the performance of the observer. Comparison between the linear and nonlinear approaches of the observers.Peer ReviewedPostprint (author’s final draft

    Modeling and control of PEM fuel cells

    No full text
    Aplicat embargament des del moment de la defensa fins al 5 de juliol de 2019.In recent years, the PEM fuel cell technology has been incorporated to the R&D plans of many key companies in the automotive, stationary power and portable electronics sectors. However, despite current developments, the technology is not mature enough to be significantly introduced into the energy market. Performance, durability and cost are the key challenges. The performance and durability of PEM fue! cells significantly depend on variations in the concentrations of hydrogen and oxygen in the gas channels, water activity in the catalyst layers and other backing layers, water content in the polymer electrolyte membrane, as well as temperature, among other variables. Such variables exhibit intemal spatial dependence in the direction of the fuel and air streams of the anode and cathode. Highly non-uniform spatial distributions in PEM fuel cells result in local over-heating, cell flooding, accelerated ageing, and lower power output than expected. Despite the importance of spatial variations of certain variables in PEM fuel cells, not many works available in the literature target the control of spatial profiles. Most control-oriented designs use lumped-parameter models because of their simplicity and convenience for controller performance. In contrast, this Doctoral Thesis targets the distributed parameter modelling and control of PEM fuel cells. In the modelling part, the research addresses the detailed development of a non-linear distributed parameter model of a single PEM fuel cell, which incorporates the effects of spatial variations of variables that are relevant to its proper performance. The model is first used to analyse important cell intemal spatial profiles, and it is later simplified in arder to decrease its computational complexity and make it suitable for control purposes. In this task, two different model order reduction techniques are applied and compared. The purpose of the control part is to tackle water management and supply of reactants, which are two major PEM fuel cell operation challenges with important degradation consequences. In this part of the Thesis, two decentralised control strategies based on distributed parameter model predictive controllers are designed, implemented and analysed via simulation environment State observers are also designed to estímate intemal unmeasurable spatial profiles necessary for the control action. The aim of the first strategy is to monitor and control observed water activity spatial profiles on both sides of the membrana to appropriate levels. These target values are carefully chosen to combine proper membrane, catalyst layer and gas diffusion layer humídification, whilst the rate of accumulation of excess liquid water is reduced. The key objective of this approach is to decrease the frequency of water removal actions that cause disruption in the power supplied by the cell, increased parasitic losses or degradation of cell efficiency. The second strategy is a variation of the previous water activity control strategy, which includes the control of spatial distribution of gases in the fuel and air channels. This integrated solution aims to avoid starvation of reactants by controlling corresponding concentration spatial profiles. This approach is intended to prevent PEM fuel cell degradation due to corrosion mechanisms, and thennal stress caused by the consequences of reactant starvation.A pesar de los avances actuales, la tecnología de celdas de hidrógeno tipo PEM no está suficientemente preparada para ser ampliamente introducida en el mercado energético. Rendimiento, durabilidad y costo son los mayores retos. El rendimiento y la durabilidad de las celdas dependen significativamente de las variaciones en las concentraciones de hidrógeno y oxígeno en los canales de alimentación de gases, la humedad relativa en las capas catalizadoras, el contenido de agua de la membrana polimérica, así como la temperatura, entre otras variables. Dichas variables presentan dependencia espacial interna en la dirección del flujo de gases del ánodo y del cátodo. Distribuciones espaciales altamente no uniformes en algunas variables de la celda resultan en sobrecalentamiento local, inundación, degradación acelerada y menor potencia de la requerida. Muy pocos trabajos disponibles en la literatura se ocupan del control de perfiles espaciales. La mayoría de los diseños orientados a control usan modelos de parámetros concentrados que ignoran la dependencia espacial de variables internas de la celda, debido a la complejidad que añaden al funcionamiento de controladores. En contraste, esta Tesis Doctoral trata la modelización y control de parámetros distribuidos en las celdas de hidrógeno tipo PEM. En la parte de modelización, esta tesis presenta el desarrollo detallado de un modelo no lineal de parámetros distribuidos para una sola celda, el cual incorpora las variaciones espaciales de todas las variables que son relevantes para su correcto funcionamiento. El modelo se usa primero para analizar importantes perfiles espaciales internos, y luego se simplifica para reducir su complejidad computacional y adecuarlo a propósitos de control. En esta tarea se usan y se comparan dos técnicas de reducción de orden de modelos. El propósito de la parte de control es abordar la gestión de agua y el suministro de reactantes, que son dos grandes retos en el funcionamiento de las celdas con importantes consecuencias para su vida útil. En esta parte de la tesis, dos estrategias de control descentralizadas, basadas en controladores predictivos de modelos de referencia con parámetros distribuidos, son diseñadas, implementadas y analizadas en un entorno de simulación. Estas tareas incluyen también el diseño de observadores de estado que estiman los perfiles espaciales internos necesarios para la acción de control. El objetivo de la primera estrategia es monitorear y controlar perfiles espaciales observados de la humedad relativa en las capas catalizadoras para mantenerlos en niveles apropiados. Estos niveles son escogidos cuidadosamente para combinar la correcta humidificación de la membrana y las capas catalizadoras, reduciendo la velocidad de acumulación de agua líquida. El objetivo clave de este enfoque es disminuir la frecuencia de las acciones de remoción de agua dentro de la celda, ya que estas acciones causan interrupción en la potencia suministrada, aumento de las cargas parasitarias y disminución de la eficiencia. La segunda estrategia es una variación de la estrategia anterior que considera adicionalmente el control de la distribución espacial de los gases en los canales del ánodo y cátodo. Esta solución integrada tiene como objetivo evitar la ausencia local de reactantes mediante el control de perfiles espaciales de concentración de gases. Este enfoque pretende prevenir la degradación de las celdas debido a mecanismos de corrosión. Los resultados muestran un mayor rendimiento de la celda considerando los enfoques de control de perfiles espaciales propuestos en esta tesis, en comparación con técnicas de control que ignoran dichos perfiles. Además, la característica descentralizada de los esquemas de control, combinada con el uso de modelos reducidos dentro de los controladores predictivos, tiene un impacto positivo importante en el rendimiento general del control

    Distributed parameter model simulation tool for PEM fuel cells

    No full text
    En este trabajo se ha desarrollado una herramienta de simulación para pilas de combustible tipo PEM, basada en un modelo de parámetros distribuidos. La herramienta está diseñada para realizar estudios de variaciones espaciales y temporales a lo largo de los canales de alimentación de reactantes. El trabajo muestra y analiza los resultados de simulación de una monocelda monocanal. Las variables estudiadas son las concentraciones de los reactantes, presiones, temperaturas, humidificación, contenido de agua de la membrana, corriente, entre otras que influyen significativamente sobre el rendimiento y durabilidad de las pilas PEM.Peer Reviewe

    Distributed parameter model simulation tool for PEM fuel cells

    No full text
    En este trabajo se ha desarrollado una herramienta de simulación para pilas de combustible tipo PEM, basada en un modelo de parámetros distribuidos. La herramienta está diseñada para realizar estudios de variaciones espaciales y temporales a lo largo de los canales de alimentación de reactantes. El trabajo muestra y analiza los resultados de simulación de una monocelda monocanal. Las variables estudiadas son las concentraciones de los reactantes, presiones, temperaturas, humidificación, contenido de agua de la membrana, corriente, entre otras que influyen significativamente sobre el rendimiento y durabilidad de las pilas PEM.Peer Reviewe

    Distributed parameter model simulation tool for PEM fuel cells

    No full text
    In this work, a simulation tool for proton exchange membrane fuel cells (PEMFC) has been developed, based on a distributed parameter model. The tool is designed to perform studies of time and space variations in the direction of the gas channels. Results for steady-state and dynamic simulations for a single cell of one channel are presented and analyzed. Considered variables are concentrations of reactants, pressures, temperatures, humidification, membrane water content, current density, among others that have significant effects on the performance and durability of PEMFC. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.Peer Reviewe

    Distributed parameter model-based control of water activity and concentration of reactants in a polymer electrolyte membrane fuel cell

    No full text
    Water management is still a key challenge for optimal performance and durability of polymer electrolyte membrane (PEM) fuel cells. Water levels along the channel in a PEM fuel cell present important spatial variations that should be taken into account to avoid both local flooding and local drying. In this work, a decentralised model predictive control scheme is designed to maintain the water activity on both anode and cathode sides of the PEM at appropriate levels. The proposed strategy tackles the accumulation of liquid water on the surface of the catalyst layers, and the possibility of local drying, by controlling observed water activity spatial profiles. Classic PEM fuel cell issues like reactant starvation are also considered. High control performance is achieved. The strategy is applied to a validated distributed parameter PEM fuel cell model. Results show increased cell power density in comparison to non-spatial control strategies.Peer Reviewe
    corecore